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‡ Physique Nucĺeaire Th́eorique et Physique Mathématique CP 229, Université Libre de
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Abstract. Applying the techniques of supersymmetric quantum mechanics we determine closed
algebraic expressions for potentials that are phase-equivalent with the generalized Ginocchio
potential, which is a member of the rather general Natanzon-potential class. In particular,
we discuss the elimination of bound states, the addition of one (or more) bound state at
specific energies and also mention transformations that leave the spectrum unchanged. Our
work represents the application of the abstract mathematical formalism developed recently for
the modification of the spectrum of potentials without changing theS-matrix and the phase
shifts. A new aspect of our work is that in addition to the new potential function, we give
closed analytical expressions for the transformed Jost functions and bound-state wavefunctions.
Furthermore, this work is the first example for generating phase-equivalent partners of a potential
outside the relatively simple shape-invariant potential class.

1. Introduction

Phase-equivalent potentials appear naturally in various branches of physics. Besides having
the same phase shifts, these potentials might support a different number of bound states if
(at least) one of them is singular at the origin. The formalism of supersymmetric quantum
mechanics (SUSYQM) was found to be especially suitable for describing phase-equivalent
potentials.

Since its introduction SUSYQM has evolved into a highly sophisticated method of
handling isospectral quantum mechanical systems. (For recent reviews on SUSYQM see
[1, 2].) Its early applications concerned mainly single transformations by which the ground
state of a potential could be removed or a new ground state could be introduced, depending
on the solution of the Schrödinger equation used in the process. It was noticed that
these manipulations also change ther−2-like singularity of the potentials and modify the
phase shifts in a characteristic way [3, 4]. Later it was shown [5] that by using pairs
of such transformations one can construct potentials that lead to the same phase shifts
as the original potential despite the different numbers of bound states the two potentials
support, and this result was interpreted in terms of the generalized Levinson theorem [6].
This aspect of SUSYQM also allowed straightforward interpretation of the long standing
problem represented by the duality of ‘deep’- and ‘shallow’-type potentials used in the
description of interacting composite particles. The relation of SUSYQM to other methods
of analysing isospectral potentials, such as the inverse scattering theory [7] has also been
discussed [3, 4, 8, 9].
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More recently the formalism of generating phase-equivalent potentials has been
developed to a stage where, in principle, arbitrary modifications of the energy spectrum
are possible [10, 8, 11]. The final potential and the wavefunctions are expressed in terms
of compact formulae depending on integrals and determinants composed of physical and
unphysical solutions of the Schrödinger equation. These expressions can be evaluated by
numerical techniques in general.

The generality and compactness of the formulae also raises the question whether it is
possible to find examples where the whole procedure can be performed in an analytical
way, i.e. whether there are cases where the resulting potential is obtained in a closed
algebraic expression. Such investigations are also motivated by the renewed interest in
exactly solvable quantum mechanical problems also raised partly by SUSYQM (see for
example [12, 1, 2] and references therein). Efforts in this direction have been limited to
some particular examples from the well known shape-invariant potential class [13]. The
ground state of the Coulomb [14, 15], Morse and Hulthén [16] potentials have been removed,
and somewhat more general transformations have been formulated for the Coulomb [15, 10]
and the generalized Pöschl–Teller [17] potentials. Other potentials have also been studied
without analysing the effect of the transformations on their spectra [18]. Apart from their
aesthetic value, the importance of fully analytical transformations lies in the fact that exact
results can be obtained even in critical conditions when the numerical techniques might not
be safely controlled. Handling complex potentials can raise such problems, for example
[19, 20].

The abstract formalism developed for the derivation of phase-equivalent partners of
known potentials can be applied to the rather general Natanzon potential class [21], which
contains all the shape invariant potentials [13] as special cases. In order to demonstrate this
we derive potentials which are phase-equivalent with the generalized Ginocchio potential
[22], which is probably the most well known member of the Natanzon potential class.

In section 2 we briefly review the basic transformations used in SUSYQM. We study
the generalized Ginocchio potential in section 3 and formulate analytical transformations
for removing or adding bound states in the spectrum, and introducing new parameters in
the potentials while leaving the spectrum unchanged. Finally, in section 4 we summarize
the results and give a brief outlook for further studies.

2. The basic transformations of SUSYQM

Let us consider the radial Schrödinger equation (with ¯h2/2m = 1)

H0ϕ0(k, r) =
(
− d2

dr2
+ V0(r)

)
ϕ0(k, r) = k2ϕ0(k, r) (1)

and the factorization of the corresponding Hamiltonian

H0 = A+0A−0 + E0 (2)

where the factorization energyE0 = k2
0 does not exceed the ground-state energyE

(0)
0 , and

A±0 = ±
d

dr
+ ϕ

′
0(k0, r)

ϕ0(k0, r)
. (3)

The lower index 0 ofH0, V0, ϕ0 andA±0 labels the original Hamiltonian, etc. as opposed to
the corresponding quantities related to further problems derived later on. Due toE0 6 E(0)0
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Table 1. Properties of the three transformations resulting in potentials phase-equivalent
with the original potential in equation (1).V0 is supposed to be singular at the origin as
V0(r) ' ν(ν + 1)r−2, which accounts for the centrifugal term also.

Adds a bound state
Transformation Removes a bound state (ν > 1 only) Unchanged spectrum

Solutionϕ0 ψ
(i)
0 f0 ψ

(i)
0

Parameterβ −1 α > 0 α/(1− α), α > 0
Fact. energyE0 E

(i)
0 < 0 E0 6= E(i)0 , E0 < 0 E

(i)
0 < 0

limr→0ϕ0 rν+1 r−ν rν+1

limr→∞ϕ0 exp(−|k(i)0 |r) exp(−|k0|r) exp(−|k(i)0 |r)
Singularity ofV2 (ν + 2)(ν + 3)r−2 (ν − 2)(ν − 1)r−2 ν(ν + 1)r−2

F2(k)/F0(k) k2/(k2 + |k(i)0 |2) (k2 + |k0|2)/k2 1

the solutions of (1) are nodeless. The supersymmetric partner ofH0 is defined as

H1 ≡ − d2

dr2
+ V1(r) = A−0A+0 + E0 = H0− 2

d

dr

ϕ′0(k0, r)

ϕ0(k0, r)
. (4)

The properties ofV0(r) andV1(r) are connected in a characteristic way determined by the
nature of the solutionϕ0 [4, 10]. In the following we call the solutionϕ0 physical if it is
a bound-state wavefunction or a scattering solution ofV0, and refer to it as an unphysical
solution in any other case.

Further potentials can be derived by combining single SUSYQM transformations. Pairs
of such transformations can be employed to generate potentials phase-equivalent with the
original one provided that the factorization energies are chosen to be equal, guaranteeing
that the original scattering phases are restored after the second step. For the resulting
transformation, the factorization energy is no longer required to be smaller thanE

(0)
0 . As

described in [10], for example, only three non-trivial combinations are possible, and the
resulting potential is written as

V2(r) = V0(r)+ 2
d

dr

(ϕ0(k0, r))
2

β + ∫∞
r
(ϕ0(k0, t))2dt

. (5)

The appropriate choices ofϕ0(k0, r) andβ are summarized in table 1, where the properties
of the three basic transformation types are also given. In table 1,ψ

(i)

0 represents the
wavefunction of an arbitrary bound state at energyE

(i)

0 = k(i)20 while f0 represents a solution
decreasing at infinity and singular at the origin, at any negative energyE0 = k2

0 where there
is no bound state. The integral in the denominator of (5) always converges because the
chosenϕ0(k0, r) decrease exponentially at larger, in all cases. The wavefunctions of
V2(r) are expressed in terms of the original wavefunctionsϕ0(k, r) and the (physical or
unphysical) factorization functionsϕ0(k0, r) as

ϕ2(k, r) = N− 1
2

(
ϕ0(k, r)− ϕ0(k0, r)

∫∞
r
ϕ0(k0, t)ϕ0(k, t)dt

β + ∫∞
r
(ϕ0(k0, t))2 dt

)
. (6)

HereN = 1, except fork = k0 whenϕ2(k0, r) is physical, in which caseN = α [11].
The ratioF2(k)/F0(k) of the original and the transformed Jost functions (see the last

line of table 1 and also [23]) confirms that theS-matrix is unchanged:S2(k) = S0(k). In
the case of the removal of a bound state, the zero of the initial Jost function at i|k(i)0 | is
suppressed, and a pole is added at−i|k(i)0 | in order to restore theS-matrix. In the same
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way, in the case of the addition of a bound state, two zeros are added simultaneously to
the Jost function: one at i|k0| which corresponds to the new bound state, and one at−i|k0|
which restores theS-matrix. Finally, the Jost function is unchanged when the spectrum is
not modified. Phase equivalence can also be verified directly on the asymptotic behaviour
of (6). Note that the third possibility also contains implicitly the trivialV2(r) = V0(r)

transformation forα→ 1, and also the removal of a bound state in theα→∞ limit.
Further potentials phase-equivalent withV0(r) can be derived by iterating transformation

pairs [8, 11]. The equivalent of equation (5) for multiple spectrum modifications can be
written as a compact formula involving a determinant containing integrals of physical and
unphysical solutions satisfying (1) [8, 11],

V2m(r) = V0(r)− 2
d2

dr2
ln det

(
βiδij +

∫ ∞
r

ϕ0(ki, t)ϕ0(kj , t)dt

)
(7)

where theki correspond tom different factorization energiesEi = k2
i . A similar formula

is available for a generalization of (6) with equations (20) and (21) of [11]. These
transformations are, in principle, capable of generating arbitrary modifications of the energy
spectrum while keeping the scattering phases unchanged. The determinant form also
suggests that the final result is independent of the sequence of the individual transformation
pairs, because exchanging two of them merely corresponds to exchanging two columns of
the determinants.

3. Phase-equivalent partners of the generalized Ginocchio potential

3.1. Properties of the generalized Ginocchio potential

The first version of the Ginocchio potential was introduced as a one-dimensional quantum
mechanical problem which is symmetric with respect to thex → −x transformation [24].
Later it was generalized to a radial problem [22], which also contains anr−2-like singular
term at the origin and allows a particular functional form of an effective mass as well.
This effective (i.e. coordinate-dependent) mass is clearly incompatible with the simple
Schr̈odinger equation in (1), therefore here we consider a special case allowing constant
mass. In what follows we define the generalized Ginocchio potential as

V0(r) = − γ 4

γ 2+ sinh2 u

[
s(s + 1)+ 1− γ 2− 5γ 2(1− γ 2)2

4(γ 2+ sinh2 u)2

−3(1− γ 2)(3γ 2− 1)

4(γ 2+ sinh2 u)
− λ(λ− 1) coth2 u

]
(8)

where we changed the notation of [22] to make it more suitable for our purposes. This form
can be obtained from the original formulae by settinga = 0, αl = λ− 1

2, νl = s, βnl = µ,

λ = γ andy = sinhu(γ 2+ sinh2 u)−
1
2 .

The (generalized) Ginocchio potential is an example for ‘implicit’ potentials, because it
is expressed in terms of a functionu(r) which is known only in the implicitr(u) form:

r = 1

γ 2
[tanh−1((γ 2+ sinh2 u)−

1
2 sinhu)

+(γ 2− 1)
1
2 tan−1((γ 2− 1)

1
2 (γ 2+ sinh2 u)−

1
2 sinhu)]. (9)

r can take values from the positive half axis, which is mapped by the monotonously
increasing implicitu(r) function onto itself. This function is actually the solution of an
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ordinary first-order differential equation

du

dr
= γ 2 coshu

(γ 2+ sinh2 u)
1
2

(10)

defining a variable transformation connecting the Schrödinger equation with the differential
equation [25] of the Jacobi (and Gegenbauer) polynomials [26, 27]. It can be seen from
equations (9) and (10) thatu(r) behaves approximately asγ r near the origin, and asγ 2r

for large values ofr. In the γ → 1 limit u becomes identical withr, and (8) reduces to
the generalized P̈oschl–Teller potential.

Bound states are located at

En = −γ 4µ2
n (11)

wheren varies from 0 tonmax defined below and

µn = 1

γ 2

−(2n+ λ+ 1

2

)
+
[(

2n+ λ+ 1

2

)2

(1− γ 2)+ γ 2

(
s + 1

2

)2
] 1

2

 . (12)

All the terms in (8) are finite at the origin, with the exception of the last one, which
showsr−2-like singularity there, and can be considered either as an approximation of the
centrifugal term withl = λ−1 (λ integer), or as a part of a singular potential with arbitrary
l 6= λ− 1. Settingλ = 1 we get the ‘simple’ Ginocchio potential [24] defined on the line.
In what follows we assume thatλ > 1 holds.

The bound-state wavefunctions are expressed in terms of Jacobi polynomials

ψ
(n)

0 (r) = Nn(γ 2+ sinh2 u)
1
4 (sinhu)λ(coshu)−µn−λ−

1
2P

(µn,λ− 1
2 )

n (2 tanh2 u− 1) (13)

which reduce to Gegenbauer polynomials [25] forλ = 1. The normalization is given by

Nn =
[

2γ 2n! 0(µn + λ+ n+ 1
2)µn(µn + λ+ 2n+ 1

2)

0(µn + n+ 1)0(λ+ n+ 1
2)(µnγ

2+ λ+ 2n+ 1
2)

] 1
2

. (14)

Considering that ther →∞ asymptotical limit corresponds tou→∞ (see equation (9)),
the wavefunctions become zero asymptotically ifµn > 0 holds. Applying this condition
to equation (12) we find that the number of bound states is set bynmax <

1
2(s − λ). To

illustrate phase-equivalent transformations we use thel = 0 reference potential withs = 8,
λ = 3.25 andγ = 15. This potential and its three bound-state wavefunctions are plotted
by dotted lines in figures 1–3.

Later on we shall use the Jost solutions of equation (1) with potential (8) satisfying [28]

f Jost
0 (k, r)→r→∞ iλ−1 exp(ikr). (15)

They can be expressed in terms of two linearly independent solutions for arbitrary energy
E = k2 and can be written as

f Jost
0 (k, r) = exp(ikr1)(γ

2+ sinh2 u)
1
4 (−i sinhu)1−λ(coshu)−µ(k)+λ−

3
2

×F
(

1

2
(µ(k)− λ+ σ(k)+ 2),

1

2
(µ(k)− λ− σ(k)+ 1);µ(k)+ 1; 1

cosh2 u

)
(16)
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Figure 1. PotentialV2(r) of equation (29), obtained by the removal of the first excited state of
the reference potentialV0(r) (upper panel), and the wavefunctions of the two remaining bound
states (lower panel). The reference potential (as in equation (8) withs = 8, λ = 3.25 and
γ = 15) and its bound-state wavefunctions are represented by broken curves.

where

σ(k) = − 1
2 + [µ2(k)(1− γ 2)+ (s + 1

2)
2]

1
2 (17)

µ(k) = − ik

γ 2
(18)

and

r1 = 1

γ 2

[
(γ 2− 1)

1
2 tan−1(γ 2− 1)

1
2 − ln

(γ
2

)]
(19)

as in [22]. The Jost solutions allow expressing the Jost function as

F0(k) =
(
−k

2

)λ−1
π

1
2

0(λ− 1
2)

lim
r→0

(rλ−1f Jost
0 (k, r))
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Figure 2. PotentialV2(r) of equation (41) obtained by adding a new bound state (a) between
the two lowest states of the reference potentialV0(r) at E = −11 289.063 (upper panel), and
the wavefunctions of the four states (lower panel). Here we consideredM = 3 and set the new
parameter asα3 = 0.005. (See also the caption of figure 1.)

=
(
− ik

2

)λ−1
π

1
2γ−λ+

3
2 exp(ikr1)0(1+ µ(k))

0( 1
2(µ(k)+ λ− σ(k)))0( 1

2(µ(k)+ λ+ σ(k)+ 1))
. (20)

This provides theS-matrix as

S0(k) = exp(2iδ0(k)) = (−1)λ−1F0(−k)
F0(k)

(21)

which, together with the substitutions discussed previously, gives the result of [22], up to a
(−1)l phase. This difference is due to the fact that, for the definition of thisS-matrix, we
consider here that the Ginocchio potential is a singular potential in thel = 0 partial wave,
rather than a regular potential in thel = λ− 1 partial wave. This is quite natural since we
allow hereλ to be noninteger. This convention also explains the unusual factors appearing
in equation (15), the first line of equation (20), and in the definition of theS-matrix in
terms of the Jost function in equation (21), as explained in [28]. As can be verified by
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Figure 3. Potential of the type (48) obtained by modifying the normalization constant of the first
excited state of the reference potentialV0(r) (upper panel) and the corresponding wavefunctions
(lower panel). We have usedα = 10. (See also the caption of figure 1.)

equation (21), theS-matrix tends to 1 fork→ 0, and to exp[iπ(1− λ)] at infinity. This is
in accordance with the Levinson theorem, generalized for singular potentials [6],

δ0(0)− δ0(∞) =
(
nmax+ 1+ λ− 1

2

)
π. (22)

3.2. Removal of bound states

Let us assume that we want to eliminate the bound state with quantum numberN . Following
the notation of equation (13) theN th wavefunction can be written in a polynomial form

ψ
(N)

0 (r) = (γ 2+ sinh2 u)
1
4 (sinhu)λ(coshu)−µN−2N−λ− 1

2pN(coshu) (23)

where the coefficients of

pN(coshu) = NN(coshu)2NP
(µn,λ− 1

2 )

N (2 tanh2 u− 1) ≡
N∑
j=0

c
(N)
j (coshu)2j (24)
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are written as

c
(N)
j = NN(−1)N−j

0(µN +N + 1)0(µN + 2N + λ+ 1
2 − j)

j !(N − j)!0(µN +N + 1− j)0(µN +N + λ+ 1
2)
. (25)

The same formulae hold, of course, for any other bound-state wavefunction, which we label
with quantum numbern.

In order to derive the new potential and the new bound-state wavefunctions using (5)
and (6), the substitutionsϕ0(k0, r) = ψ(N)

0 (r) andϕ0(k, r) = ψ(n)

0 (r) have to be made now
along withβ = −1 in table 1. The integrals appearing in (5) and (6) can then be expressed
in terms of the general formula

INn(r) =
∫ r

0
ψ
(N)

0 (t)ψ
(n)

0 (t) dt = (sinhu)2λ+1

(coshu)µN+µn+2N+2n+2λ−1
GNn(u) (26)

whereGNn(u) is defined as

GNn(u) = 1

(2λ+ 1)γ 2

n+N∑
m=0

d(Nn)m (coshu)2m

µN + µn + 2N + 2n+ 2λ+ 1− 2m

×
[
(2λ+ 1)(γ 2− 1)

cosh2 u
+ ((µN + µn + 2N + 2n− 2m)γ 2+ 2λ+ 1)

×F(− 1
2(µN + µn)−N − n+m+ 1, 1; λ+ 3

2;− sinh2 u)

]
. (27)

This expression can be derived using [29, equations 3.194.1 and 2] after rearranging the
summation for the two running indices appearing in the polynomial form ofψ

(N)

0 (r) and
ψ
(n)

0 (r). This also requires the introduction of the coefficients

d(Nn)m ≡
min(m,N)∑

j=max(0,m−n)
c
(N)
j c

(n)
m−j . (28)

The resulting potential which has bound states atEn in (11), except forn = N takes
the form

V2(r) = V0(r)+ 2
γ 2+ sinh2 u

cosh4 u sinh2 u

[
(pN(coshu))2

GNN(u)

]2

− 2γ 2(pN(coshu))2

GNN(u)

×
[

1

γ 2+ sinh2 u
− 2µN + 4N + 2λ+ 1

cosh2 u
+ 2λ

sinh2 u
+ 2

coshu

p′N(coshu)

pN(coshu)

]
(29)

while the new bound-state wavefunctions are

ψ
(n)

2 (r) = (γ 2+ sinh2 u)
1
4 (sinhu)λ(coshu)−µn−2n−λ− 1

2

×
[
pn(coshu)− pN(coshu)

GNn(u)

GNN(u)

]
. (30)

We note that in theγ → 1 limit equations (26) to (29) reduce to the corresponding formulae
derived for the generalized Pöschl–Teller potential [17].

Figure 1 showsV2(r) (as in (29)) obtained by removing the first excited state (N = 1) of
the reference potential (plotted by dotted line). In accordance with the generalized Levinson
theorem (22) the(λ−1)λr−2-type singularity ofV0(r) has changed to(λ+1)(λ+2)r−2 for
V2(r), formally increasing the value ofλ with two units. The corresponding wavefunctions
are also presented in figure 1 with the corresponding initial wavefunctions as broken curves.
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The Jost function ofV2 is directly related to that ofV0 (see table 1), which is analytically
known (equation (20)). TheS-matrices ofV0 andV2 are thus identical.

With equation (7),m arbitrary bound states can be removed. For simplicity, we focus
on them = 2 case but more general potentials can be obtained for arbitrarym in an obvious
way. After removal of the bound states at energiesEN1 andEN2, the potential reads

V4(r) = V0(r)− 2
d

dr

(ψ
(N1)

0 )2IN2N2 + (ψ(N2)

0 )2IN1N1 − 2ψ(N1)

0 ψ
(N2)

0 IN1N2

IN1N1IN2N2 − (IN1N2)
2

(31)

where all functions depend onr which is implied. Note that due to equation (26) the
derivative of INiNj is simply the product ofψ(Ni)

0 and ψ
(Nj )

0 . The wavefunctions of the
remaining bound states at energiesEn can also be written in terms of the same objects as
third-order determinants [8, 11].

3.3. Addition of new bound states at specific energies

In order to add a new bound state at energyE = k2 one has to apply (5) withϕ0(k, r)

chosen as anf -type solution of (1) which is irregular at the origin (withλ > 3 at least) and
exponentially goes to zero asymptotically. Nowβ in table 1 remains arbitrary, representing
an additional parameter (α) of the resulting potential. The required unphysical solution of
the Schr̈odinger equation is proportional to the Jost function (16) for Im(k) > 0; we choose
here the phase as

f0(k, r) = i1−λ exp(−ikr1)f
Jost
0 (k, r). (32)

Substituting this function in equations (5) and (6) integrals containing squared
hypergeometric functions would have to be determined, which might not be expressed
in closed form in general. Although integration by parts can bring these formulae to
somewhat simpler expressions, their evaluation becomes relatively straightforward only
when the hypergeometric functionsF(a, b; c; cosh−2 u) reduce to polynomial form, i.e.
when eithera or b is a nonpositive integer. This, of course, reduces the generality of the
example considered here, and this is manifested in the fact that new bound states can be
inserted only at specific energies.

From theb = −M choice we get− ik
γ 2 − λ+ 1− σ(k)+ 2M = 0, which means that a

new bound state can be introduced at the negative energies

EM = k2
M ≡ −γ 4τ 2

M (33)

where

τM = 1

γ 2

−(2M − λ+ 3

2

)
+
[(

2M − λ+ 3

2

)2

(1− γ 2)+ γ 2

(
s + 1

2

)2
] 1

2

 . (34)

From ik < 0 it follows that conditions for the allowed values ofM (i.e. the possible new
energy eigenvalues) are determined byM < 1

2(s − λ) + λ− 1
2, where 1

2(s − λ) represents
the upper limit for the number of bound states the original potential can support. This
indicates that a more singular generalized Ginocchio potential (8) (i.e. one with largerλ)
can accommodate the new bound state in more possible positions if the other parameters

is fixed. This remains true when we sets − λ, i.e. the number of bound states fixed.
Considering the special case discussed above thef -type solution takes the polynomial

form

f
(M)

0 (r) = (γ 2+ sinh2 u)
1
4 (sinhu)1−λ(coshu)−τM−2M+λ− 3

2qM(coshu) (35)
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where

qM(coshu) ≡
M∑
j=0

b
(M)
j (coshu)2j (36)

and

b
(M)
j = (−1)M−j

M!0(τM + 2M − λ+ 3
2 − j)0(τM + 1)

j !(M − j)!0(τM +M + 1− j)0(τM +M − λ+ 3
2)
. (37)

With this notation the integral in (5) can be expressed in terms of the implicitu(r)

function (9). For the sake of generality we present here the integral of twof -type solutions
(35) belonging toM andM ′:

JMM ′(r, αM) = δMM ′αM +
∫ ∞
r

f
(M)

0 (t)f
(M ′)
0 (t) dt

= (sinhu)3−2λ

(coshu)τM+τM′+2M+2M ′−2λ+3
HMM ′(u, αM) (38)

with

HMM ′(u, αM) = δMM ′αM(sinhu)2λ−3(coshu)τM+τM′+2M+2M ′−2λ+3

+ 1

γ 2

M+M ′∑
m=0

e(MM
′)

m (coshu)2m

τM + τM ′ + 2M + 2M ′ − 2λ+ 3− 2m

×
[

1− γ 2+
(
γ 2+ 3− 2λ

τM + τM ′ + 2M + 2M ′ − 2m

)
×F

(
1

2
(τM + τM ′)+M +M ′ − λ+ 3

2
−m, 1;

1

2
(τM + τM ′)+M +M ′ + 1−m; 1

cosh2 u

)]
(39)

and

e(MM
′)

m ≡
min(m,M)∑

j=max(0,m−M ′)
b
(M)
j b

(M ′)
m−j . (40)

With these, the final form of the new potential (containing also the extra parameterαM )
becomes

V2(r) = V0(r)+ 2
γ 2+ sinh2 u

sinh2 u

[
(qM(coshu))2

HMM(u, αM)

]2

− 2γ 2(qM(coshu))2

HMM(u, αM)

×
[
− cosh2 u

γ 2+ sinh2 u
+ 2τM + 4M + 1+ 2λ− 2

sinh2 u
− 2 coshu

q ′M(coshu)

qM(coshu)

]
.

(41)

In the γ → 1 limit V2(r) reduces to the corresponding expression for the generalized
Pöschl–Teller potential [17].

The new bound-state wavefunctions can be expressed in a similar manner, with the
difference that in (6) another integral containing thef -type solution and a physical
wavefunction together has to be evaluated. The resulting formula is

ψ
(n)

2 (r) = (γ 2+ sinh2 u)
1
4 (sinhu)λ(coshu)−µn−2n−λ− 1

2

×
[
pn(coshu)− coth2 u

LMn(u)

HMM(u, αM)
qM(coshu)

]
(42)
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where

LMn(u) = 1

γ 2

n+M∑
m=0

g(Mn)m (coshu)2m

τM + µn + 2M + 2n− 2m

×
[

1+ γ 2− 1

cosh2 u

τM + µn + 2M + 2n− 2m

τM + µn + 2M + 2n+ 2− 2m

]
(43)

with

g(Mn)m ≡
min(m,M)∑

j=max(0,m−n)
b
(M)
j c

(n)
m−j . (44)

Using equations (6), (35) and (38) the normalized wavefunction of the new bound state
can be written as

ψ
(M)

2 (r) = α1/2
M (γ 2+ sinh2 u)

1
4 (sinhu)λ−2(coshu)τM+2M−λ+ 3

2
qM(coshu)

HMM(u, αM)
. (45)

Figure 2 presents a potential of the type (41) obtained by inserting a new bound state
between the two lowest states of the reference potentialV0(r). This new bound state is
labelled by ‘a’, while other bound states keep the same label. The potential presents a quite
complicated structure, with several wells. This structure is strongly modified when other
energies or parameters are chosen. Similarly to the phase-equivalent removal of a bound
state, the generalized Levinson theorem (22) manifests itself by a change in the strength of
the r−2-type singularity at the origin. However, in this caseλ is formally decreased with
two units, and not increased as in the case of eliminating a state. The wavefunctions of
V2(r) are also displayed in figure 2. The wavefunction with zero node and that of the new
bound state have a complicated structure, corresponding to the potential shape.

With equation (7),m bound states can also be added at selected energies. This
leads to more phase-equivalent potentials available analytically, provided that the condition
λ > 2m+1 is satisfied. Here also, we focus on them = 2 case for simplicity. The potential
will depend on two energies related toτM1 andτM2 chosen among the values given by (34),
and on two arbitrary parametersαM1 andαM2. Its analytical expression reads

V4(r) = V0(r)+ 2
d

dr

(f
(M1)

0 )2JM2M2 + (f (M2)

0 )2JM1M1 − 2f (M1)

0 f
(M2)

0 JM1M2

JM1M1JM2M2 − (JM1M2)
2

(46)

wherer is again implied. The situation is similar to that discussed after equation (31), and
the wavefunctions of the different bound states at energiesEn andEMi

can again be written
explicitly in terms of theJMiMj

andJMin and of the functionsψ(n)

0 andf (Mi)

0 .
The other possible choice for reducing the hypergeometric function in (32) and (16) to

polynomial form,a = −M, yields ik
γ 2 + λ− 2− σ(k)− 2M = 0, which puts more severe

constraints on the possibleM values than the corresponding formulae forb = −M. It turns
out, for example, that witha = −M new bound states can be introduced for potentials that
originally did not support any bound states.

3.4. Unchanged spectrum

For the sake of completeness we finally present formulae for the third kind of operation
appearing in table 1, i.e. the pair of transformations that first eliminates a state and then
reintroduces it at the same energy, leaving the spectrum unchanged, introducing only a new
parameter.
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Similarly to the phase-equivalent removal of states here also the physical wavefunctions
ψ0 have to be applied. Making use of the normalizability of the bound-state wavefunctions
the integral appearing in (5) can be expressed in terms of theINn(r)s of (26):

α

1− α +
∫ ∞
r

(ψ
(N)

0 (t))2 dt = 1

1− α −
∫ r

0
(ψ

(N)

0 (t))2 dt ≡ 1

1− α − INN(r). (47)

The new potential is then

V2(r) = V0(r)+ 4ψ(N)

0 (r)(ψ
(N)

0 (r))′
1

1−α − INN(r)
+ 2(ψ(N)

0 (r))4(
1

1−α − INN(r)
)2 . (48)

Its explicit expression is given by (29) with the replacement

GNN → GNN − (1− α)−1(sinhu)−2λ−1(coshu)2µN+4N+2λ−1. (49)

According to (6) the new bound-state solutions take the form

ψ
(n)

2 (r) = [1+ (α − 1)δNn]
−1/2

(
ψ
(n)

0 (r)− ψ(N)

0 (r)
δNn − INn(r)

1
1−α − INN(r)

)
. (50)

Their explicit expression is given by (30) with replacements similar to (49). Just as in the
case of inserting a new bound state, a parameter appeared in the formulae. Theα→ 1 limit
corresponds to the trivialV2(r) = V0(r) transformation, whileα → ∞ gives the removal
case. Even more parameters can be introduced by iterating this type of transformation,
similarly, for example to (46).

Figure 3 presents a potential of the type (48) obtained by modifying the normalization
constant (used in the sense of inverse scattering theory [7]) of the first excited state of
V0(r). The generalized Levinson theorem is not modified this time, neither is the potential
singularity, because the number of bound states is unchanged. The wavefunctions are also
given in figure 3. Let us note that the asymptotic behaviour of these wavefunctions is not
modified by the transformation, except for the first excited state. This feature is related
to phase equivalence [11], and is also true in the removal and addition cases, as can be
seen in figures 1 and 2. Moreover, in the unchanged spectrum case, the behaviour of the
wavefunctions at the origin is also unaffected, except for the modified state. This can be
seen in equation (50) where forn 6= N the limit for r → 0 does not depend onα.

4. Summary and conclusions

We applied the abstract formalism of supersymmetric quantum mechanics to the specific case
of the generalized Ginocchio potential and explicitly derived closed algebraic expressions for
its phase-equivalent partners. The spectrum of the resulting potential was identical with the
generalized Ginocchio potential, except possibly for certain bound states which were either
removed from the spectrum or were added to it. For the generalized Ginocchio potential,
analytical expressions of the Jost function and of theS-matrix are available. Because of
phase-equivalence, theS-matrix is not modified by the transformations described here. The
Jost function is multiplied by a rational function of the wave number when a bound state
is added or removed, and is unchanged when the spectrum is unchanged.

Our work is the first example for deriving phase-equivalent partners of a potential outside
the shape-invariant class using the formalism of SUSYQM. Another novelty is that we also
gave closed analytical expressions for the bound-state wavefunctions of the new potential.
We note that our results are directly applicable to the generalized Pöschl–Teller potential
by taking theγ = 1 substitution.
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One type of transformations was the removal of an arbitrary bound state from the
spectrum of the generalized Ginocchio potential. The definite integrals appearing in the
formulae could be calculated analytically in any case here. As another example we
added a new bound state to the spectrum of the generalized Ginocchio potential. Then
the integrand contained hypergeometric functions, and the integrals could be evaluated
only in special cases, which meant that the new bound state could be inserted only at
specific energies. This procedure requires anr−2-like repulsive singularity of the original
potential, therefore it is generalizable only to potentials that have this feature. This forbids
a similar treatment of a number of potentials (Morse, Hulthén, Rosen–Morse, etc). We also
discussed transformations which do not change the spectrum, but introduce one (or more)
parameter in the potential. This type of transformation is known from inverse scattering
theory and is applicable to other types of potentials as well. We briefly outlined how the
three transformation types can be iterated.

Similarly to other fully analytical transformations, our results might be helpful in
testing numerical methods in situations that might be problematic in terms of numerical
techniques. This is the case, for example, for certain types of complex potentials [19, 20]:
our formulae are applicable to complex Ginocchio potentials without any major modification.
The particular case of the Ginocchio potential offers analytical results for a potential with
rather flexible shape, which can be considered as a reasonable approximation of realistic
potentials used in nuclear physics, for example. Similar treatment of further rather general
Natanzon-class potentials also seems possible. These include examples close to potential
shapes used in atomic, molecular, solid state physics and other areas.
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